Heat Transfer Investigation of Air Flow in Microtubes-Part II: Scale and Axial Conduction Effects.
نویسندگان
چکیده
In this paper, the scale effects are specifically addressed by conducting experiments with air flow in different microtubes. Three stainless steel tubes of 962, 308, and 83 μm inner diameter (ID) are investigated for friction factor, and the first two are investigated for heat transfer. Viscous heating effects are studied in the laminar as well as turbulent flow regimes by varying the air flow rate. The axial conduction effects in microtubes are experimentally explored for the first time by comparing the heat transfer in SS304 tube with a 910 μm ID/2005 μm outer diameter nickel tube specifically fabricated using an electrodeposition technique. After carefully accounting for the variable heat losses along the tube length, it is seen that the viscous heating and the axial conduction effects become more important at microscale and the present models are able to predict these effects accurately. It is concluded that neglecting these effects is the main source of discrepancies in the data reported in the earlier literature.
منابع مشابه
Heat Transfer Investigation of Air Flow in Microtubes—Part I: Effects of Heat Loss, Viscous Heating, and Axial Conduction
Experiments were conducted to investigate local heat transfer coefficients and flow characteristics of air flow in a 962 lm inner diameter stainless steel microtube (minichannel). The effects of heat loss, axial heat conduction and viscous heating were systematically analyzed. Heat losses during the experiments with gas flow in small diameter tubes vary considerably along the flow length, causi...
متن کاملModeling and Simulation of Heat Transfer Phenomenon in Steel Belt Conveyer Sulfur Granulating Process
Complex heat transfer phenomena (including unsteady state conduction, convection and solidification processes) occur in steel belt conveyer sulfur granulating method. Numerical simulation of this technique is performed via a comprehensive and multifaceted one dimensional model. Since the air situated between the adjacent sulfur pastilles is essentially stagnant, therefore, the surface tempe...
متن کاملInvestigation on thermal behavior of common types of roofs in buildings using computational fluid dynamics method
In this study, the influence of type and structure of different roofing systems were investigated using computational fluid dynamic method. The considered roofing systems include beam and block types (clay brick, light weight concrete block, polystyrene) and Uboot slab which were designed for 6m and 8m span. To simulate the fluid flow and heat transfer, the computational fluid dynamic method wa...
متن کاملHeat transfer and friction characteristics of air flow in microtubes
Several researches dealing with the single-phase forced convection heat transfer inside microchannels have been published in the past decades. The performance of liquid flow has been proved that agrees with the conventional correlations very well. However, owing to the low heat transfer coefficient of gaseous flow, it is more difficult to eliminate the effects of thermal shunt and heat loss tha...
متن کاملAn investigation of heat and mass transfer enhancement of air dehumidification with addition of γ-Al2O3 nano-particles to liquid desiccant
This study introduces an experimental and theoretical investigation of the performance of a proposed air dehumidification system using a nanofluid of γ-alumina nano-particles in LiBr/H2O as a desiccant. Comparative experiments organized using a central composite design were carried out to evaluate the effects of six numerical factors (air velocity, desiccant flow rate, air humidity ratio, desic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of heat transfer
دوره 135 3 شماره
صفحات -
تاریخ انتشار 2013